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Abstract. The techniques of the preceding paper are applied to several cases where the y 
equation may be solved by separation of variables in the form, y = y l ( p ) +  y2(7), where 
y l ( p )  is either zero or a very simple function and y 2 ( 7 )  satisfies an ordinary differential 
equation of the fourth order. Among the exact solutions constructed are the full six- 
parameter family of generalised Tomimatsu-Sat0 solutions, the rotating Curzon solution, 
the Kinnersley-Kelley solution and a class of solutions recently found by Ernst. Two new 
classes of solutions are presented as well as several new particular solutions expressible in 
closed form. In 8 4, all stationary axisymmetric vacuum metrics with a non-trivial second- 
rank Killing tensor whose components do not depend on the ignorable co-ordinates, q5 and 
t ,  are derived. This problem reduces to finding separable solutions of the dual of the y 
equation of the form, = R(p, ~ ) [ f ( p ) +  g(~)] ,  in four special co-ordinate systems, 
(p ,  T ) ,  where R(p, T )  is a prescribed simple function. A comparison tis made with the 
canonical Schrodinger separable metric forms of Carter. 

1. Introduction 

In the preceding paper (Cosgrove 1978a, to be referred to as I, with equation numbers 
denoted by the prefix I, for example, 1(2.7)), Einstein’s equations for the stationary 
axisymmetric vacuum gravitational field were reformulated so that y became the basic 
field variable and U, w and the Ernst potentials became derived quantities. The 
functions, y = y ( r ,  z ) ,  U = u(r ,  z )  and w = w(r ,  z ) ,  arise in the canonical form of the 
metric, 

(1.1) ds2 = e2’(dr-w d 4 ) 2 - e - 2 u { e 2 v ( d r 2 + d z 2 ) + r 2  d42}, 

and the Ernst potentials, 4, 8 and 6, are defined by I(1.7) and I(l.8). The field equation 
for y is the fourth-order partial differential equation I(l.11 and the  relationship of A, B, 
C and J to U and 4 is given by equations I (2 . l~ -e ) .  Actually, it was found convenient 
to formulate the general theory in terms of arbitrary co-ordinates, p = p ( r ,  z )  and 
T = T ( r ,  z )  (note, particularly, the square-bracket-subscript notation in equations 
1(2.6u-e)), and in (p, T )  co-ordinates, the y equation is I(2.7) with A, B, C and J given 
by I(2.9~-d).  The rather non-trivial problem of constructing U and CC, from a given y 
satisfying I(2.7) was solved in 9 3 of I by three methods and found to depend on a pair of 
non-coupled ordinary differential equations. 

In this paper, we focus attention on several particular co-ordinate systems, ( r ,  z), 
(p, e),  ( x ,  y),  (v, T ) ,  (U, T )  and (a, /3), which are defined in the appendix, and (s, A )  which 
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is defined by equation (3.26) below. In 8 2 and Q 3, we seek vacuum metrics for which y 
takes the form, 

in four cases, (p. 7 )  = ( U ,  q), (s, A ), (p, 19) and (z, r ) ,  the second and fourth cases yielding 
new solutions. The functional form of -yl(p) is restricted to depend on one parameter 
only so that Y , ( T )  satisfies a single ordinary differential equation of the fourth order and 
is therefore a transcendental function involving five parameters (one of which is a trivial 
additive constant). The first case, (p ,  T )  = (v, q), gives rise to the six-parameter general- 
ised Tomimatsu-Sato solutions (Cosgrove 1977a, to be referred to as c, with equation 
numbers denoted by the prefix c),  and our starting point in the derivation is a slight 
generalisation of ‘Rule (a)’ of Tomimatsu and Sat0 (1973). The remaining three cases 
give rise to limiting or contracted forms of the generalised Tomimatsu-Sat0 solutions 
and contain as special cases the rotating Curzon solution (Cosgrove 1977b), the 
extreme Kerr solution. the solution of Kinnersley and Kelley (1974), one of Lewis’ 
solutions (Lewis 1932, pp 184-5) and an interesting four-parameter family of solutions 
due to Ernst (1977). We also give a number of new particular cases expressible in closed 
form. 

In 4, we search for all vacuum metrics of the form (1.1) possessing a non-trivial 
second-rank Killing tensor whose components do not depend on the ignorable co- 
ordinates, 4 and r ,  making no a priori assumptions about separability of the Hamilton- 
Jacobi equation or about the algebraic type of the Riemann tensor. We are soon led to 
essentially the same canonical metric form as Carter (1968) who sought metrics for 
which the Hamilton-Jacobi and Schrodinger equations were separable in a certain way. 
but we employ the dual of the y equation in order to pick out the vacuum metrics. The 
required solutions are found among the variable-separable solutions of the dual of the y 
equation of the four forms, 

(1.3) 

When we extend the argument to metrics not expressible in Lewis’ form ( l . l ) ,  we notice 
four metrics which are Hamilton-Jacobi and Schrodinger separable but which do not 
appear on Carter’s list (Carter 1968, equations (4)-(19)). We also produce several 
examples which do not have the correct Lorentz signature of -2 including some that are 
not Hamilton-Jacobi separable. 

2. Derivation of the six-parameter generalised Tomimatsu-Sato solutions 

Let us construct the generalised Tomimatsu-Sat0 (rs) solutions starting from a suitable 
modification of TS ’Rule (a)’  (TS 1973). The paper, c, did not provide a derivation from 
first principles but simply presented the results with proofs that they satisfied Einstein’s 
vacuum equations and that a three-parameter subclass (containing the Kerr and TS 

series of rational function solutions) was asymptotically flat. The derivation given here 
is still not the original derivation from transformation groups (Cosgrove 1978b) but this 
present pair of papers will be a prerequisite for the planned future paper containing the 
original derivation. 
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Now Tomimatsu and Sat0 (1973) write the complex Ernst potential 6 as the ratio of 
two complex polynomials in x and y ,  i.e., 6 = a//?,  and write down seven ‘Rules for 
Computation’ labelled ( a )  to  ( 8 )  satisfied by a and p. Some of these rules only apply to 
the original TS series of solutions. However, as pointed out in § 6 of c, the TS ‘Rule (a)’ 
may be written as the partial differential equation, 

Brx,yl = 4u,u, + e-4”&1,1Ly = 0, (2.1) 

the notation B I , , ~ ~  being taken from I. There it was shown that B[x,yl  = O  for all 
generalised TS solutions with the parameter h = 0. When h # 0, the rule must be 
generalised to 

B [ x , y ]  = 4 h ( x 2 -  l)-l(l- y 2 ) - l .  

(At the end of this section, we shall give formulae for a and p separately for the full 
six-parameter family and so give a more precise statement of TS ‘Rule (a) ’ . )  

We shall take, as starting point in our derivation, equation (2.2) with h = h ( ~ ) ,  an 
undetermined function of 77, but will soon be forced to conclude that h is a constant (this 
was promised at the end of 9 6  of c but, however, a claim made there that this 
assumption allows solutions outside the generalised TS class is erroneous). It is 
convenient to work with field variables, B[x,y l ,  C,x,yl and J [ x , y ~ ,  even though the 
preferred co-ordinates are (v, 77).  Hence, using equations (A.3) and (A.7b) from the 
appendix and (2.2), we find 

( 2 . 3 ~ )  

From ( 2 . 3 ~ )  we see that rs ‘Rule (a) ’ ,  i.e. B,x,yl = 0, implies that y is a function of 77 
only. In the present case, ( 2 . 3 ~ )  implies that yq must take the form, 

l + v  k(77) 
1 - v  277(1+77)’ 

y,, = h ’ (7 )  In -+ (2.3b) 

k ( q )  arbitrary, and so from equations, (A.7a) and (A.7c) expressions for A, C and J 
are readily found. Substituting these into the field equation I(2.7) with (p,  T )  = (x, y ) ,  we 
notice that the left hand side of I(2.7), when written as a function of 77 and v, is a quartic 
polynomial in In[(l + v)/(l  - v)] whose coefficients are rational functions of Y .  Clearly, 
i f  the left hand side of I(2.7) is to be identically zero, the coefficients of each power of 
In[(l + v)/(l  - v)] must vanish separately. Conveniently, the fourth-power term arises 
only from the term, -4J2, in I(2.7). Thus the vanishing of the fourth-power term gives 
the following differential equation (DE) for h ( q ) ,  

[77(1+77)h”+(1+277)17’][(1+77)h“+h’] = o ,  

h = a  ln(1+1/77)+ho and h = a  l n ( l + q ) + h o ,  (2.4) 

the prime denoting d ldq ,  whose general solution splits into two families, 

a,  ho constants. There is no loss of generality in considering the first case only as either 
case maps onto the other under the familiar symmetry, (x, y ) -  ( y ,  x).  But now B 
contains the logarithm term, l n ( l +  1/77), and A and C do not, so the coefficient of 
ln4(l + 1 /q )  in the left hand side of I(2.7) is easily seen to be -1024a‘(xz- 1)-4(1 - 
Y * ) - ~  thereby forcing a to vanish and reducing h to a constant. 
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Now, from (2.3a, 6 )  and (A.7a, 6, c), we have, explicitly 

A[x,yj = 4(x2 - 1)-2(-qk’+ k), 
B [ x , y ]  =4h(x2-  l)-l(1-y2)-l, 

C[x,yl = -4(1- ~ ~ ) - ~ k ‘ ,  

J L ~ , ~ J  = 16(x2- 1)-2(1 - ~ ~ ) - ~ ( ~ k ” - k k ’ - h ~ ) .  

The field equation I(2.7) simplifies to 

(1/256)(x2- 1)4(1  left hand side of I(2.7)) 

(2.5a) 

(2.56) 

( 2 . 5 ~ )  

(2.5d) 

= [ - 2 7) ( 1 + q )k ”’ - 2 7) ( 1 + 2 7) )k ”1 [ qk l 2  - kk ’ - h ’1 
+ ~ ~ ( 1 +  ~ ) k ” ~ ( 2 7 ) k ‘ -  k)-4(77k’2-kk’- h2)2 = 0. 

7) 2 (  1 + ~ ) ~ k ” ’  = 4[ 7 k f 2  - kk’ - h ’1 [ -( 1 + T/ )k‘ + k - S ’1 

(2.6) 

A first integral is readily found to be 

(2.7) 

where S is a constant. 
With k ( ~ )  replaced by H4(77), equation (2.7) is seen to be precisely the H4 equation, 

~ ( 3 . 1 4 ) .  Observe that (2.3u, 6) with h constant correspond to c(6.9). As in c, we 
introduce functions, r(q) and r(q) = (constant)T**r(q), according to 

k =S2+v(1+7)) r /F‘=-S2q +q( I+q)T’ / f  (2.8) 
so that 

e2y =constant(;) l + v  2h ( 1 +--) 1 - g 2  r(,-,) 
1-  

(2.9a) 

(2.96) 

The three-parameter asymptotically flat generalised TS solutions arise by setting h = 0 
in (2.7) and imposing the boundary condition, 

k(77)’H44(7))= S2p-2+o(7)-1)  as q+m, (2.10) 

where p is a constant and p 2  +q2 = 1. The three parameters are K (from (A.2)), q and S 
and, with K = mpS-’, the solution represents the vacuum exterior of a gravitational 
source of mass m, angular momentum m2q and quadrupole given by ~ ( 8 . 1 4 ~ ) .  Of 
course, with only e’’ determined so far, the full metric is not uniquely determined but, 
according to theorem 1 of § 3 of I, the full class of metrics is generated from a particular 
one by the SL(2) transformation group P defined by I ( l . l l ) .  However, for the metric to 
be asymptotically Minkowskian and have m > 0, the matrix representing I ( l . l l )  is 
uniquely determined and we shall arrange for it to be the unit matrix, (a1 ,  a2 ,  a3,  a4)  = 
(1, 0, 0, 1). Dropping this requirement, we have the four-parameter (generalised 
TS)-NUT metrics, counting only the NUT parameter A ,  defined by 1(1.12u), as an extra 
parameter, the others being trivial. In the asymptotically non-flat cases, the case of zero 
NUT parameter is not well defined. The fifth and sixth parameters of the full family are 
obtained, respectively, by dropping the boundary condition (2.10) and by restoring h to 
(2.7) and (2.9). 
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Further integration of equation (2.7) is not a straightforward matter. For the 
asymptotically flat cases, an extremely rapidly converging infinite series method is 
outlined in 9 10 of c. In the TS cases, when S is an integer, the series terminates so that r 
is a polynomial in 7 7 - l  of degree 6* and k = H4 is a rational function of 77 (see 0 11 of c). 
This series method may be adapted to the asymptotically non-flat cases including the 
h # 0 cases. The method generalises rather neatly to a five-parameter class (parameters 
K ,  q, 8, h and A )  of solutions with h # 0 where an analogue of (2.10) holds: setting 

s 2 = n 2 + 2 m n + 2 m 2 ,  h = m(n + m ) ,  (2.11) 

the first two terms in the perturbation expansions of H4 and f' in the parameter q 2 p - 2 ,  
p 2 + q 2  = I ,  are 

R77) = P2"vSzr(77) 
H4(77) = [ ( n  + m l2 - m 2 v ]  + q 2 p - 2 ~ ( 1  + 77)V(77)+0(q4p-4), (2.12) 

(2.13) 

where 

(2.14) 

aFl(n + 2 m + 1 , 1  - n ;  2m + 2 ;  -7-l). (2.15) 

Note that, when m = 0 and n = 8, the functions V and W here become identical to the 
functions V and W defined by ~ ( 1 0 . 2 0 )  and c(10.16a), respectively, and then (2.13) 
agrees with c(10.7), ~ ( 1 0 . 8 ~ )  and ~ ( 1 0 . 2 2 ~ ) .  As pointed out at the end of 9 11 of C, 
there are two series of elementary functional solutions when n = 1, 2 ,  3 , .  . . and when 
n +2m = 1, 2, 3, . . . . The cases n = 1 , 2  and n +2m = 1, 2 are given explicitly by 
c(l1.23) and ~ (11 .24 ) .  The two series are not distinct, so consider only n = 1, 2,  3, . . . 
and put c4 = -1 in c(l1.23) and ~(11 .24) .  These elementary solutions arise because the 
power series for f ,  whose first two terms are given by (2.13), terminates at the (n  + 1)th 
term, (-1)n2q2"77mz. Most of the symmetry properties of the polynomials f for S an 
integer described in 9 11 of c, generalise neatly to the elementary functions f with n an 
integer and m # O .  In particular, TS 'Rule (c)' holds and is expressed by ~ (11 .12 ) .  
Below, we shall present the full metric in closed form for the case n = 1. 

Now, most of the hard work in constructing the full metric for y satisfying (2.3u, b )  is 
done by the general theory of § 3 of I and we shall be able to compare formulae in § 3 of I 
directly with formulae in c. Define ul ,  u2, H1 and H2 by 

(TI = Q-1(H4--Hk)1'2, u 2  = ( -Hi  (2.16u, b )  

w = ,.-m-1 

H1 = ; (77 2 2 2  u 1 u 2  - h2)"2, H2=(-S2+772u: + ~ ; ) l ' ~ ,  ( 2 . 1 6 ~ ,  d )  

with signs of the square roots chosen so that the differential relations between these 
functions given by ~ ( 5 . 7 ~ 2 ,  b, c, e, f )  hold. From (A.&, b, c), we have 

2 2 2 -  4(1+ r/)((+: + 77 u1v 2hv) 
(1 - v2)2(1 + q v 2 )  AhVl = 

-2H4v + 2 h ( l -  q v 2 )  
v(1- v2)(1 + q v 2 )  ' Bb.7lI = 
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2H1 
q(1- v2)'  D[",TlI = 

and, from 1(3.10), 

By substituting these expressions for A and 
linear Fuchsian DE having 

into 1(3.13), one constructs a third-order 

F, = 4' e-2u + eZu F' =e-", F2 = -4 e-2u, 

as linearly independent solutions. When h = 0, this DE is precisely equation ~ ( 7 . 3 )  and 
may be simplified to c(7.6). When h # 0, the symmetry which permitted simplification 
to c(7.6) is not available, so the alternative K'" equation, c(3.17) (see below), is more 
useful. 

Taking (p, T )  = (Y, q )  and PO = YO = 0, the functions, Mo(v, q), M ( v ,  q), C L O ( ~ ) ,  C L I ( ~ )  
and p2(q) ,  in § 3 of I are identical to the corresponding functions in § 4 and § 5 of C. 
Therefore the two Riccati equations, I(3.19)and 1(3.18), are identical to the two Riccati 
equations, c(5.13), which reduce to c(4.15) and c(5.2), respectively, when h = 0. The 
functions, Vo, WO, V and W, of 9 3 of I correspond, respectively, to 10, Jo,  Z and J of 
0 9  4,5 of c according to 

Vo = K ' I O ,  WO = K ' J O ,  V = K ' Z ,  W = K ' J ,  

where IZ=pT1. 
When h = 0 and po = 0, the Riccati equation I(3.21) reduces to 

dwldq = (1 + q ) - 1 ' 2 a 1 ~  

allowing us to take the simple particular solution, 

(2.17~2, b, c) 

With this choice for lo, w1 and p2 in the asymptotically flat cases, the formulae 
I(3.26a, b, c )  give those metrics which are free of the NUT singularity on the symmetry 
axis. Equation (2.176) corresponds to c(3.6) and ~ ( 5 . 7 4 .  

The function L'" of § 3 of I is closely related to K'" of c. Comparing equations 
I(3.28~2, b )  with ~(5 .20~2,  b) ,  we see that the particular solutions, L?) and L$), of the L'" 
equation I(3.17) are related to the particular solutions, K?)  and Kf), of the K'" 
equation c(3.17) by 

(2.18~2) 

(2.18b) 

where 8 = (qala2)-"*(2H1 +Eih)lI2. Thus the boundary conditions c(5.21) on K'", 
which reduce to c(3.9) when h = 0, are easily deduced from the boundary conditions 
I(3.30) on L'". 

Finally, the formulae I(3.31~2, b, c)  for F1, F2 and F3 become c(4.2a, b, c)  and the 
formulae, c(4.17) and c(4.18), follow directly from I(3.26~2, b, c). However, the 

C L ~ = O ,  @ ' = A -  I =exp/  1 ( l+q) -1 '2a ldq} ,  ~ ~ 2 ' 0 .  

L?) = p;1/2e-1[(1 + ")/(I - Y ) ] f i H 2 ' 2 ~ y ) ,  

L$)  = CL i /ze-l[(i  + v) / ( i  - Y ) ] " H 2 / 2 ~ $ ) ,  
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formula, c (4 .19 )  or c(4 .20) ,  for the metric coefficient U is not easily derived from the 
general theory of § 3 of I and appears to be an accidental relationship although it arises 
quite naturally in the derivation in Cosgrove (1978b).  

As an example, let us write down explicit closed-form expressions for the metric and 
Ernst potentials for the h # 0 generalisation of the Kerr metric. Take the parametrisa- 
tion (2.11) with n = 1. Since h may take values in the range, -cc < h < 00,s may be real 
or pure imaginary and m may be real (take m 2 -4) or complex with Re m = - 3  (take 
Im m > 0) .  Consider, first, the case of real m. An expression for e'' follows immedi- 
ately from equation c(l1.23) for F. It is 

1 

( 2 . 1 9 ~ )  

(2 .196)  

6 ,  q constants, p 2  = 1 - q 2 .  The solution c ( l 1 . 2 3 )  for r was obtained from a Riccati 
equation for H4 which is the condition that the solutions of the K( ' )  equation c (3 .17 )  be 
free of logarithms at the regular singular point, v = 1, which has exponents, - i and 4. 
This same property allows the K'" equation itself to be converted to a hypergeometric 
equation which may then be solved with elementary functions. The Riccati equation 
c(5 .15) ,  from which p o ,  p 1  and p 2  are constructed, does not reduce to a familiar 
standard equation but may be solved with elementary functions with a little ingenuity. 
We shall not work through these rather lengthy calculations here but the interested 
reader may construct any of these functions from the finished formulae for e'", $ and U .  

The complex Ernst potential 6 is given by 

where 

ff = ~ p ( X 2 - l ) m [ ( X + l ) m + 1 ( 1 - y ) m + ( x - l ) m + 1 ( l + y ) m ]  

p = 4 p ( x 2 -  l ) " [ ( x  + l )"+l( l  - y)" - ( x  - l)"+l(,+ y ) " ]  

+ f i q ( l  - y2 )" [ (x  + I)"(I - ~ ) ~ + l - ( x  - 1)" (1  + y ) m + l ~ ,  (2 .20a)  

+ t i q ( 1 - y 2 ) m [ ( x + l ) m ( l - y ) m + 1 + ( x - l ) m ( l + y ) m T 1 j .  (2 .20b)  
Hence 

e 2 u  = [ ( X - 1 ) ( 1 + Y ) ] m  P2(x2 -1 )2m+' -  q2(1- y2)2"+1  

( X +  1 ) ( 1 - y )  p2(x2-1)2"(X+1)2+qZ(1-y2)2m(l  - y ) 2 '  

*= -  2pq(x -1 )2" (1+y)2" (x  + y )  
p2 (x2 -1 )2" (x  +1)"q2(1 - y 2 ) " ( 1  - y ) 2 '  

( 2 . 2 1 ~ )  

(2 .21b)  

(2 .21c )  

Of course, in these formulae, we have chosen a particular NUT parameter and we are 
free to apply the transformation I ( l . l l ) .  The chosen NUT parameter gives the neatest 
and simplest formulae for general m but, for m = 0, the above metric does not reduce to 
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the Kerr metric proper but instead to the Kerr-NUT metric, 

5 = ( P  - i4)(PX - i4Y 1, 
which has NUT parameter, A = -sin-’ 4. 

Clearly, if h > - a ,  then m is real and the metric is real-valued, but a real-valued 
metric is easily constructed for h < -:. Simply take p 2  and 4 2  to be complex conjugate 
numbers with Re p 2  = Re q 2  = f , let b in (2.19) be pure imaginary and apply the 
transformation I ( l . l l )  with ( a l ,  a2, a3, aq) = 2-1’2 (1, i, i, 1). If 4 = 0, the metric is a 
Weyl static metric. A limiting form involving logarithms can be obtained from (2.21) 
when m + - 4 .  Another limiting form appears in § 3 below. 

Finally, let us close this section by giving explicit formulae for a and p in the TS 

relation, 6 = a /& such that, in the cases where 6 is a rational function of x and y (e.g., 
the TS metrics and (2.20) with m = 0, 1 , 2 , 3 , .  . .), a and p are polynomials with no 
common factor and so give a more precise formulation of TS ‘Rule (a) ’ .  From c(4.2), 

(2.22a, b )  

Thus, likely candidates are of the form, 

a = s(K:‘” -iplK:fl)) ,  p = S ( K y ”  +ip lKF1) ) ,  (2.23) 

where S is some function which cancels out common rational and non-rational factors in 
the numerator and denominator of (2.226). A short calculation gives 

( 2 . 2 4 ~ )  

(2.246 ) 

Thus cupx -pa, is real and ap, -pay is pure imaginary in accordance with ‘Rule (a)’ if 
h = 0 and S2 is real. Now, when h = 0 and S is an integer, the polynomials a and p 
obeying all of the TS rules are given explicitly by (2.23) with 

72.25) 1 1 - 2 62/2 S = z (  Y 1 z1 

r = ZlX.2, PI=  &/&. 
where XI is defined by 

The TS-NUT metrics also obey ‘Rule (a)’  as the transformations c(3.13) leave the left 
hand sides of (2.24a, b )  invariant. Now, when h # 0, rational function solutions arise 
when n and m are both integers in the parametrisation (2.11) and, without loss of 
generality owing to symmetries, n 1 and m 3 0. In these cases, the natural splittings of 
po, p1 and p2 into numerator and denominator are as follows: 

C L o = & / ~ i ,  CLi =r/z:, 112 =24/ziV CLi + C L o p z = % / ~ i ,  

T = ZIZ2 - Z&. 

The factor S now takes the form, 

(2.26) 
where k is a real or complex constant. This formula is in agreement with (2.25) when 
h = 0 and with (2.204 6) when n = 1.  
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3. Contractions of the generalised Tomimatsu-Sato solutions 

Three distinct families of metrics can be derived as contractions of the generalised TS 

solutions. First, invert the relations (A.2), replacing z by z - zo: 

X = (1 /2K) [ r2  + (2 - Z o +  K)2]1’2 + (1 /2K) [ r2  + ( 2  -Zo-K)2]1’2,  

y = ( 1 / 2 K ) [ r 2 +  ( 2  - 2 o f  K ) 2 ] 1 / 2 - ( 1 / 2 K ) [ r 2 +  (2  -Zo-K)2]1’2.  

( 3 . 1 ~ )  

(3.16) 

The first case arises by putting zo = 0 and letting K + 0. We find (see appendix) 

K X  * P,  y + COS e, ( 3 . 2 ~ )  

(3.26) K T + A = p  cosec28, K v + s = p  cose. 2 2 -1 - 1  

The second case arises by putting z o  = - K  and letting K + 00. We find 

2 K (X - 1 ) + (T, 

77 + (1 +COS e ) / ( i  -COS e), 
2K (1 - y ) + 7, ( 3 . 3 ~ )  

(3.36) K (1 - V )  + p. 

Alternatively, we could put zo = +K and let K + 00. We then find 

2K (X - 1 ) + 7, 2K(l+y)+CT, ( 3 . 4 ~ )  

T + ( i - c ~ ~ e ) / ( i + ~ ~ ~ e ) ,  K ( l  + V ) + p .  (3.46) 

The third case arises by setting zo  = 0 and letting K +CO. We find 

~ K ’ ( x  - I ) + r ’ ,  KY * z y  ( 3 . 5 ~ )  

(3.56) 2 
K q + r 2 ,  1cv -;r 2.  

3.1. Contractions arising from (3.2) 

Comparing (2.8) and (2.9) with (3.26), we seek separable solutions of the y equation of 
the form, 

where h’ is a constant. The field equation for y reduces to a third-order DE for k‘ for 
which a first integral is readily found to be 

8 constant, the prime denoting d/dA. Equation (3.7) is the limiting form as K + 0 of 
equation (2.7) if‘we set 

h = K-lL,  8 = K - l s ’ ,  k ( l ) ) =  K - ’ C ( A ) .  (3.8) 
The metrics in this class involve five non-trivial parameters, four from (3.7) and the NUT 

parameter. 
A two-parameter class of asymptotically flat solutions (mass m, angular momentum 

m’q, quadrupole f m 3 ( l  + 24’)) occurs when we impose the conditions, 

h‘ =o ,  
L(A)=m2+O(A-1) as A -*CO, 

s’= mp = m(1 -q2)1’2,  
(3.9) 
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choosing the NUT parameter appropriately. This yields the 'rotating Curzon metric' 
which is constructed in greater detail in Cosgrove (1977b). It contains as special cases 
the static Curzon metric, where q = 0, and the extreme Kerr metric, where q = i l ,  

Since these metrics are so closely related to the generalised TS metrics, they are best 
studied by contracting formulae already derived for the generalised TS metrics using 
(3.2a, b )  and (3.8) rather than from first principles. Since this procedure is quite 
straightforward, we shall not give further details. (Note: In the discussion of the rotating 
Curzon metric in Cosgrove (1977b), we used the scaling parameter S rather than K ,  

recalling that K = mpS-' in the asymptotically flat cases, so that the co-ordinates, h and 
U, and the function fib used there are equal, respectively, to (mp)-*A, mps and (mp) -2 i  
in the present notation.) 

A simple closed-form solution with h'= 0 and 8 = 0 results when we contract the 
exact solution (2.19)-(2.21) by setting K = pp1"2m+1', p constant, and lettingp + 0. The 
limiting metric is precisely 

8 = 0 .  

I e 2 ~  - - (constant)[p2mZA -m2 - p 2 ( m +  1 P  A - ( m +  1 ) 2  

= (constant)[(pp-l sin - (pp- '  sin I ,  (3. 10a) 

2 ( ~ / p ) ~ " + ' ( 1  +COS e)2m * = -  
( p / ~ ) " + ~  + (I -cos @)*(sin @ I ~ ~  ' 

(3.10b) 

( 3 . 1 0 ~ )  

(3.10d) 

This metric is not strictly speaking new as it becomes the metric of Kinnersley and 
Kelley (1974) when we apply the NUT transformation, 8' = -i(. When m =0, it is an 
(extreme Kerr)-NrJT metric derived by attaching the NUT parameter, -17, to an 
extreme Kerr metric of mass p. If the method of 'distinguished limits' of Kinnersley and 
Kelley is applied to the h # 0 generalisations of the TS metrics with S 2 2, no further 
solutions outside the class (3.10) result. 

3.2. Contractions arising from (3.3) and (3.4) 

The co-ordinate contractions, (3.3b) and (3.4b), give rise to an interesting family of 
solutions recently published by Ernst (1977). We shall describe several interesting 
properties of these solutions and their relationship to the generalised TS solutions in a 
separate paper. Here, we shall be content with presenting their derivation and some 
new examples which take elementary functional forms. 

Applying the limit (3.3b) to equation (2.9), we find 

e'' = (constant)p-2h(1 + q)-"T(q) (3.11) 

where 77 = (1 +cos @)/(1 -cos 8 )  is the limiting form of the co-ordinate q in (2.9). We 
shall use this new q rather than 8 for convenience. Since S and h do not require 
rescaling, the functions, r(q), r(q), H4(q),  H2(77), etc, satisfy the same differential 
equations and relationships as before. Applying the limit (3.46) to (2.9), we find 

e2' = (constant)p2h(l + ~ / q ) - ' ~ r ( ~ / q ) .  
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Since r(q) and q8*T(1 /q )  satisfy the same DE, with same h and 8, then 

e'' = (constant)pzh(1 + q)p62F(q)  (3.12) 

also yields a class of solutions of Einstein's equations. When h # 0, (3.11) and (3.12) 
yield quite distinct classes of solutions for a particular r(q). Combine the two cases into 
a single formula by replacing h in (3.11) by e l h  where €1 = il. 

To construct the full metric, first calculate, from (A.6a, b, c), 

 AI^,^] = p - ' ( H :  + S 2 - 2 ~ 1 h ) ,  

B [ p , f 3 ]  = -P-1q-1/2(H4+elh(q - I)), 
C[p.e] =?(a: +o:)+2Elh,  

D[p,e] = p-1q-1'2(1 +q)H1.  

Then the F equation I(3.13) takes the very simple form, 

p 'FpPp + 3pFpp + (1 - a2  + 26 1 h )F, = 0, 

and has linearly independent solutions, 

k = O ,  * ( ~ 5 ~ - 2 2 ~ l h ) ~ / ~ ,  k 
F = P ,  

( 3 . 1 3 ~ )  

(3.136) 

( 3 . 1 3 ~ )  

(3.13d) 

6' # 2elh. Thus, reparametrising according to (2.1 l), observing that (6'- 2 ~ ~ h ) " ~  = 
n + m -elm,  we see that the Ernst potential must take the two forms, 

'8 =e2'  + i $  = (R(q)+iS(q))pn+m-alm,  ( 3 . 1 4 ~ )  

(3.14b) 

for two particular values of the NUT parameter (exceptional case 6 2  = 2elh: see (3.20) 
below). Comparing ( 3 . 1 4 ~ )  and (3.13a, 6, c, d )  with I(2.6a, b, c, d) ,  we find the rela- 
tions, 

(3.15a) ( n  + m  -elm)S/R = H2, 

[ H i  + ( n  + m - E ~ ~ ) ~ ] R , , / R  

=(n+m-~~m)q-'(1+q)-~[~~+~lm(n+m)(77-l)]+tq-~~~~~. 

(3.15 b) 

Let us write down simple closed-form solutions for the cases, n = 1 and n = 2 .  The 
planned paper mentioned at the beginning of this subsection will provide recurrence 
formulae for n + n  * 1 and m -+m *$.  If n = 1, we have 

(3.16) 

(3.17) 
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p 2 + q 2 = 1 .  I f n = 2 , w e h a v e  

2m+2 +q2)2-4p2q2(m + I)'(I+ q)2q2m+1 Y P  7)m(l+7#(p2q2m+2 + q 2 )  
%(E' = +1)= p 

i p q ( m + 1 X p 2 q 2 m + 2 [ 2 m + 3 + ( 2 m + 1 ) q ] - q 2 [ 2 m  +1+(2m +3)q]} + 
(1 + T)(P2772m+2 + q2> 

(3.18) 

(3.19) 

Solutions (3.17), (3.18), (3.19) and similar solutions for higher values of n are all new 
when m # 0. When m = 0, they reduce to the series of elementary solutions of Ernst 
(1977). The solution (3.16) is a Lewis solution which, when m = 0, is actually a flat 
space-time in unusual co-ordinates. If n = 0, the solutions of this type are either static 
or are in the Papapetrou-Ehlers class. 

It is interesting that the Newman-Penrose components, q o ,  V2 and 9 4 ,  of the Weyl 
tensor (Newman and Penrose 1962) are analytic on both branches, q = 0 and 77 = CO, of 
the symmetry axis and are asymptotically vanishing in the cases, = -1, m = 1, 
n = 1 ,2 ,3 ,  , . . , and for the metrics derived from 8' = 8-' when m = 0, n = 1 , 2 , 3 ,  . . . . 
Thus it may be instructive to explore the maximal analytic extensions of these metrics 
although either Vo or P4 is always singular at zeros of p(q). 

The exceptional cases where the forms (3.14~1, b )  for 8 are not appropriate are the 
two equivalent cases, e l  = +1, n = 0, S 2  = 2m , h = m and e l  = -1, n = -2m, S = 2m , 
h = - m 2 .  Now, for a particular NUT parameter, 8 must take the form, 

2 2 2 2 

8 = H ;  + i(S (q ) + In p 1, (3.20) 

where 

S ,  =q-1(1+q)-1~;2[~4+m2(q-1)1. (3.21) 

An infinite sequence of elementary solutions in this class may be obtained from the 
€ 1 ~  -1 cases, n = 1 ,2 ,3 ,  . . . , by letting m +-in whilst adjusting p 2 ,  q 2  and suitable 
values of a ' ,  a2, a3,  a4 in I ( l . l l )  in such a way that p2q"+2m+(-l)nq2 approaches 
a + b In q with b / a  finite. A simple example, where h = i, S = 1/&, is 

l n q + a  . 
q + i g=-- I l n ( l+  l / q ) + i  In p, ( 3 . 2 2 ~ )  

3.3. Contractions arising from (3.5) 

The third contraction (3.56) leads to separable solutions of the form, 

y = 2hl r  + J r-'k(r)dr, (3.23) 

where k(r) satisfies the differential equation, 

(rk"- k')2 = 8(rk'* -2kk1-4h:r)(-k'-2S:r), (3.24) 

the prime denoting dldr, and h l  and 6' are constants. These solutions appear to be 
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quite new, except for a few special cases known to Lewis (1932), even though, like the 
previous family, they may be obtained as separable solutions of the Ernst 'iz? equation. 

Define 
fiZ(r)=(--$r-'k'-61) 2 112 , 

f i l ( r )=  $(k'2-2r-1kk'-4h:)1/2, 

with signs chosen so that fi; = -4r-'fi1. The correspondence with the generalised TS 

solutions is given by setting 

H4(77)= k(r), H2(77)= ~&2(r) ,   HI(^)= Kfil(r), h = K ~ I ,  S = KSI 

before letting K +CO.  Now, from 1(2.2), 

= -2r-'k', B[,,,] = 4hlr-', 

C [ z , r ]  = -2r- 'k '+4rf2k, Dc,,,] = 4r-'fi1. 

Hence, the F equation I(3.13) takes the very simple form, 

F,,, -46:Fz = O ,  

from which we deduce, for a particular NUT parameter, the Ernst potential, 

8 = (-$r-1k')-1'2(81 -ifi2)exp( -461hl 1 k'-' dr +2S1z), (3.25) 

when S1 # 0. When = 0, the Ernst potential takes the form, 

% = f i ~ ; l  + i (4h l  j k"dr-22). (3.26) 

unless f i 2  = 0 in which case the metric is a cylindrically symmetric Weyl solution. 
Now the DE (3.24) transforms into (3.7) under the change of variables, 

k (r) = -A -'G(A ), = A - ' / 2  

so the exact solution ( 3 . 1 0 ~ )  leads immediately to the solution, 

e2' = (constant)[(pr)2cm+1)' - (pr)2'"2]. 

However, this solution is not new but is precisely the general rotating cylindrically 
symmetric solution of Lewis (1932). It is a special case of (3.26), which was also known 
to Lewis (1932, see the solution on pages 184-5 and compare it  with e2' =A;', 
w = -k(r)-2hlz). 

4. Vacuum metrics with two Killing vectors and a second-rank Killing tensor 

In this section, we shall derive all vacuum metrics of the form, 

ds = gij dx' dx' = g44 dt2 + 2g3, d 4  dt + g 3 3  d4 '+  gll  dr2 + g Z 2  dz2,  

(X , x , x , x4) = (r, Z,  4, t ) ,  gij = gij(r, z), gll = g22, which possess a second-rank Killing 
tensor (Walker and Penrose 1970, Woodhouse 1975) whose components are functions 
of the non-ignorable co-ordinates, r and z ,  only. The form (4.1) presupposes the pair of 
commuting Killing vectors, a/&$ and a l a ,  as well as the discrete reflection symmetry, 

(4.1) 
2 

1 2 3  
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(4, r ) +  (-4, - r ) .  Lewis (1932) showed that V2(-A)1’2 = 0, where 

v2 = a2/ar2 + a2/az2, 2 Aeg33g44-(g34) , 

and so derived the canonical form (1.1) by setting A = -r2. However, this canonical 
choice of co-ordinates is not available i f  A is constant, in which case a suitable canonical 
metric form is (4.32) below, or if A is any function of r + iz or r - iz only, but in this case 
the metric cannot, in general, if its Ricci tensor vanishes, adopt the correct Lorentz 
signature of -2 (see (4.43) below). 

Our approach differs substantially from other authors (with the exception of Hauser 
and Malhiot (1974) for the case of spherical symmetry) in that we make no assumptions 
regarding separability of the Hamilton-Jacobi (HJ) or Schrodinger equations or about 
the algebraic type of the Riemann tensor but solve Killing’s equations coupled with 
Einstein’s equations directly from first principles. Nevertheless, in the case of Lewis’ 
metric form (l,l), we are led to essentially the same canonical form for metrics (vacuum 
or otherwise) possessing a Killing tensor as Carter (1968, equation (1)) who assumed 
that the HJ and Schrodinger equations are solvable by separation of variables (Carter 
was later aware that the assumption of Schrodinger separability can be avoided as it is a 
consequence of HJ separability-see Benenti (1976), Collinson and Fugere (1977)). But 
here, to pick out the vacuum metrics which adopt Carter’s canonical form, we shall 
employ the y equation I(2.7) which, by the duality principle explained in I, is satisfied by 
y - U  + a  In r. Then four functional forms for to be substituted are given by (1.3) 
above. Later, we notice a class of HJ and Schrodinger separable metrics of the form 
(4.32) below which do not appear on Carter’s list (see his equations (4)-(19) with 
A = e = 0 classifying the solutions into types [A], [B(+) ] ,  [g(-)] and [ D ] )  as well as a 
number of metrics with non-Lorentz signature possessing a Killing tensor but which are 
not HJ separable. 

Killing vectors K’(a/ax’) and second-rank Killing tensors K”(d/dx’)(a/dx’) may be 
defined as having the property that 

K, dx‘/ds = constant, K,,(dx’/ds)(dx’/ds) = constant 

are first integrals of the differential equations for a non-null geodesic. The defining 
equations for Killing vectors and tensors are, respectively, 

K(’, ,)  = 0, K ( 1 i . k )  = 0, (4.2a, 6 )  

the semicolon denoting covariant differentiation. A Killing tensor K”(d/dx’)(a/ax’) 
will be considered reducible (trivial, redundant) if K” is a linear combination with 
constant coefficients of g”  and products of Killing vector components of the form K’K’ 
and/or K“L”, and a set of irreducible Killing tensors will be considered distinct if no 
linear combination of them forms a reducible Killing tensor or zero. Clearly, the metric 
(4.1) always possesses the trivial Killing tensors, 

12. ( a / ~  >(a la r ) ,  g”(a/ax‘  ax'). 

Further, individual metrics differing by a co-ordinate transformation will be considered 
equivalent and classes of metrics differing by a reparametrisation and/or co-ordinate 
transformation will be considered equivalent. In particular, the transformation group 
L, defined by I(1.5) or 1(1.6), generates an equivalence class of metrics and, by theorem 
2 of § 3 of I,  we need provide only a single completed metric for a given e2y-2u. Also, for 
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convenience, we shall regard two metrics as equivalent even i f  the co-ordinate trans- 
formation or reparametrisation involves the formal use of complex numbers. Thus, for 
example, the cylindrically symmetric static metric, 

e 2 u = a r ,  w = ~ ,  (4.3) 2 A  e2y-2u  - - b r 2 A ( A - l )  

a, b, A constants, is equivalent under L with (pi, p2,  p3, p4)= (0, -i, -i, 0), the dual of 
&’= -6, to the same metric with A replaced by 1 - A .  Similarly, by this convention, 
Carter’s metrics of types [l?(+)] and [l?(-)] are equivalent to each other. 

Now, the contravariant form of Killing’s equations (4.2b) may be written 

(4.4) g/(kK1f I/ = @ k g l l l m r  

the comma denoting partial differentiation. When K” = Kif(r ,  z ) ,  the 20 components 
of this tensor equation separate into two completely independent sets of 10 equations. 
Consider, first, the cases, 

( i jk )  = (333), (334), (344), (444), 

( i j k ) =  (113), (114), (123), (124), (223), (224): 

( 4 . 5 ~ )  

(4.56) 

which involve only the tensor components, K i 3 ,  K i 4 ,  K 2 3  and K24.  The four equations 
( 4 . 5 ~ )  form a set of four linear homogeneous algebraic equations for K i 3 ,  KI4,  K 2 3  and 
K24. Thus these components either all vanish or the coefficient determinant vanishes, 
i.e., 

2 -4u - ( u a ,  -u,w,)2-(l/r)wz(ua, - u z w r ) + u z  e - 0, 

using the metric form (1.1). Thus, from 1(2,11), this may be written, r2J’  = C’,  which is 
the partial DE, 

r2(v2ll2 = l: + l:, 

l r = r ( v r  2 2  -U=), lL =2rv,v,, V2v+(1/r)v,=0.  
for l = y - U ,  whose general integral is given by 

Hence A’ = 4vf + l / r2 ,  B’ = 4v,v,, C’ = 4vf,  J’ = (4/r2)v:. The field equation I ( l . l )  
simplifies to the single term, -(64/r4)vz = 0. So 

(4.6) ~ e 2 Y - 2 U  - - br2A(A-l) 

b, A constants. When A f t ,  these metrics are the Lewis cylindrically symmetric metrics 
equivalent under L to the static metrics (4.3). The case A = $ is the exceptional case in 
theorem 2 of § 3 of I and so (4.6) permits the entire family of Lewis solutions of the 
second kind defined by 1(2.18), but in these cases the six equations (4.5b) assume very 
simple forms and permit only the cylindrically symmetric solution, 

, (4.7) 

c, d, b constants. The only Killing tensors that result in either case are trivially reducible 
to the Killing vectors, a/az, a/&$ and alar.  Very similar conclusions apply to the metric 
forms (4.32), (4.34) and (4.43) below so that all non-trivial Killing tensors with 

The remaining ten of Killing’s equations (4.4) will now be written out in general 
orthogonal co-ordinates ( x ’ ,  x 2 ,  x 3 ,  x4)=  (p, ~ , d ,  t ) ,  as in § 2 and § 3 of I, the ortho- 
gonality condition being g i 2  = g2’ = 0. The cases, ( i j k )=  ( l l l ) ,  (1 12), (122) and (222), 

e2’ = r(c + d In r), w = *(c + ci In r ) - ’ ,  e 2 Y - 2 U  - - br-1/2 

K” = Ki’(r, 2) must have KI3 = KI4 = K 2 3  = K24 = 0. 
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are, respectively, 

g"(K 'I), = (g' ')JY ' ' + ( g " ) X  1 2 ,  ( 4 . 8 ~ )  

g 2 2 ( K 1 1 ) T + 2 g 1 1 ( K 1 2 ) p  = (g1' )pK12+(g'1)TK22,  (4.8b) 

g"(K22),  +2gZ2(K12X = (g22)pK11+(g22)TK12 ,  ( 4 . 8 ~ )  

gZ2(KZ2) ,  = ( g Z 2 ) p K 1 2  + (g22)TK22.  (4.8d) 

These four equations would remain unaffected if we allowed the components K" to be 
functions of all four co-ordinates. The six cases, ( i j k )  = (133), (233), (134), (234), (144) 
and (244), may be grouped into two sets of three equations as follows: 

g"(K"), = ( g ' m ) ~ l ' + ( g ' " ) T K 1 z ,  (4.9u) 

g22(K'm)T = (g'")pK" + (gIm),KZ2, (4.96) 

where (Im) = (33), (34), (44). 
Equations (4.8) will now be solved completely for the four unknown functions, K " ,  

K",  K Z 2  and V = e z y - z u .  Returning to the (x', x2 )=  (r,  z )  system, it is immediately 
obvious that K" -K2' and 2K" are conjugate harmonic functions, i.e., 

K " - K ~ ' =  R ( Z ,  r ) ,  2~"=z(r,  z), R,  =z,, R ,  = -zr. (4.10) 

Now, equations (4.8) reduce to the pair, 

(VKZ2) ,  = -$vz, (VK"), = -( VR ), - $ V,Z. 

Eliminating K2', we obtain the following linear partial DE for V :  

Z ( V,, - V,, ) - 2R V,, + 32, V,  - 32, V,  - 2Z,, V = 0. 

(4.11u, b) 

(4.12) 

Although equations (4.9) may be used to restrict R and Z to very simple functions, it is 
instructive, first, to solve (4.12) for general R and Z. Define new conjugate harmonic 
functions, X(r ,  2) and Y(r, z), by 

X ,  = Y, = ( R Z + Z 2 ) - ' / 2 [ ( R 2 + Z 2 ) 1 ' 2 + R ] 1 ' 2 ,  ( 4 . 1 3 ~ )  

X ,  = -yr =(R2+Z2)-1 /2[ (R2+22)1/2-R]1'2 ,  (4.136) 

with signs chosen so that XrXz = - YrYz = Z ( R 2  + Z 2 ) - ' .  The general integral of (4.12) 
is 

(4.14) 

where F and G are arbitrary functions, provided R 2 + Z 2  # 0. Now, with new co- 
ordinate identification, ( x ' ,  x', x 3 ,  x4)= ( X ,  Y, 4, t), we have 

g,, = g22 = - : [F(X)+ G( Y ) ] ,  

and g12 = g" = 0 .  The solution of (4.8) is 
g" = g2' = - 2 [ F ( X ) +  G(Y)]- '  (4.15) 

(K" may be replaced by AK"+pg",  A ,  p constants). Now equations (4.9) simplify to 

(K'")x = -G(Y)(g'")x,  (K'")Y = W w g ' " ) Y ,  
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and are readily solved for both the metric and Killing tensor components. The results 
are 

(4.17) 

(4.18) 

where Fl,(X) and Glm(Y), (Im)= (33), (34), (44), are arbitrary functions and klm are 
arbitrary constants. Note that (R2+Z2)1/2  must also take the form, f (X)+g(Y) .  

Comparing (4.15) and (4.17) with equation (1) of Carter (1968), we see that our 
form of the metric is identical (apart from notational differences) with that derived by 
Carter from the assumption of the separability of the HJ and Schrodinger equations. 
Thus all metrics of the form (4.1) with a Killing tensor, K" = Ki'(r, z ) ,  have separable HJ 
and Schrodinger equations (provided RZ + 2' # 0) and the variables of separation are X 
and Y. The next step, namely substitution of this general metric form into Einstein's 
equations, may be carried out in two ways. Translating into our notations, Carter's 
method essentially was to substitute equation (4.17) into Einstein's equations 1(1.3a, 6)  
and solve for the eight unknown functions F, Fl,, G, Glm, a quite difficult task (in fact, 
Carter also included a A-term and charge parameter e ;  here A = e  = O ) .  But it is 
somewhat easier to substitute (4.14) into the dual of the y equation I(2.7). It is then a 
very simple matter to construct the full metric and its Killing tensor. But, first, there is 
one more trick which considerably simplifies the analysis. 

With (p, 7) = (r, z ) ,  eliminate K" from (4.9a, 6) by cross-differentiation and use 
(4.10), (4.11) and (4.12) to obtain 

Z[(Vg"),,-(Vg"),,]-2R(Vg"),, +3z,(vg'"),-3z,(vg"), -2Z,,Vg" =o.  
(4.19) 

Taking the metric form (1.1) where A = -rz,  multiply (4.19) throughout by glm and sum 
over (Im), counting the (Im)=(34) case twice. We discover that U and o can be 
eliminated completely using I(2.1 la ,  b, c ) .  The resulting equation is, remarkably, 

6rF' V(rZ, - Z) = 0 (4.20) 

and so 

R = ~ a l ( r 2 - z 2 ) + b l z + c l ,  Z = alrz - blr.  (4.21) 

Using the freedom to replace z by z - z o ,  there are four canonical choices for the 
parameters, a l ,  bl and c1,  yielding four co-ordinate systems (X, Y)simply related to the 
systems, ( x ,  y), (p, O ) ,  (cr, r )  and (r, z ) ,  defined in the appendix. These are: 

Case 1 :  u1= 1,  bl = 0, c1 - ; K ' #  0, 

X=2cosh- 'x ,  Y=2s in- 'y ,  (R2+Z2)1 /z=1  Z K  ' ( x  -y*);  ( 4 . 2 2 ~ )  

Case2: a l =  1 ,  bl=O,  c l = O ,  

Case 3 :  a1 = 0, b1 = 1 ,  c1 = 0, 

x = 2r112, Y = 2C1I2, ( R 2  + z y 2  = $(U + 7); ( 4 . 2 2 ~ )  
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Case4: a l = 0 ,  b1=0 ,  c 1 = l ,  

x = JZr, Y = JZz, 
To solve Einstein’s equations for case 1, substitute 

(R + Z2)”’ = I .  (4.22d) 

(4.23) 

into the dual of the y equation, where, from (4.14) and (4.22a), f ( x ) =  (~ /K’ )F(X) ,  
g (y)=  (~ /K’ )G(Y) .  While easier than Carter’s method, it is still a tedious calculation, 
so the details will be omitted. Three classes of solutions emerge: 

f ( x ) =  a(x2+ 1)+ bx, g(y)= c(y2+ l)+dy, C b 2 +  ad2 = 4ac(a + c ) ;  (4.24) 

x - 1  g(y)=-ay2+dy+tky ln-; l + Y  f ( x ) =  ax’+bx +tkx In - 
x + l ’  1 - Y  

(4.25) 

f(x)=a(X’-l)-l, g (y)=a( l -y2) - ’ .  (4.26) 

Solution (4.24) yields the Kerr-NUT, Kerr, Taub-NUT and Schwarzschild metrics and a 
limiting case, a = c = 0, which can be a real Lorentz metric only if d = r b ,  (see (4.27) 
below). Solution (4.25) yields PE solutions of the second kind (see 8 2 and corollary 1 in 
0 3 of I )  and so normally have no application in general relativity unless they are 
equivalent under a complex element of L to a real Lorentz metric. The case, a = k = 0, 
d = r b ,  common to (4.24), is such an example. Other cases may be interpreted as 
positive definite Riemannian metrics by setting 4 = i4’, e’” < 0. Solution (4.26) yields 
the unphysical metric (4.3) with A = izkiifi which turns up also in cases 2, 3 and 4. Of 
course, the solutions just named are particular members of an equivalence class 
generated by the group L. 

The Kerr-NUT solution is normally given by Ernst’s formula, 6 = eiA (px - iqy ), 
p 2 + q 2  = 1 .  With this parametrisation, the constants, a, 6, c, d, in (4.24) are given by 
a = 1,  b = 2p-’ cos A ,  c = q’p-’, d = 2qp-’sin A, unless p = 0, in which case a = b = 0, 
c = 1, d = 2 sin A .  The limiting case, a = c = 0, d = r b ,  is equivalent to the Weyl metric 

o = 0, (4.27) 

which is a flat space-time which turns up also in cases 2 and 3 if we replace z i K by z .  
Since it is quite straightforward to construct the full metric and Killing tensors from 
equations (4.15)-(4.18), we shall not write out the results explicitly. However, note that 
not all of the solutions given by (4.25) and (4.26) have Killing tensors as (4.17) 
sometimes provides a further constraint. In fact, (4.26) does not survive at all (except in 
case 4 where the trivial Killing tensor (d/dr)’ turns up) and in (4.25), we must have 
k = O .  

The proper Kerr-NUT and Kerr metrics ( p  f 0, q # 0) are contained in Carter’s type 
[A] and their Killing tensors are irreducible. The Taub-NUT and Schwarzschild metrics 
(q_= 0 or, by (x, y ) +  (y, x )  symmetry, p = 0), having four Killing vectors, are in type 
[B(Jt)] and their Killing tensors are reducible. The Killing tensor derived from (4.25) 
with k = 0 is irreducible except for the three cases, a = b = 0 and a = d = 0, having four 
Killing vectors, and a = 0, d = r b ,  having ten (since it is flat). 

eZu = K (x * 1)(1+ y ), 

To solve Einstein’s equations for cases 2, 3 and 4, substitute 

, v =  f(a) + g(T), v = f ( r  ) + g (2  ) 
f (PI + V =  

P 2  CT+T 
(4.28a, 6, c )  
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into the dual of the y equation, respectively. In each case, two classes of solutions 
correspond to contractions of (4.24) and (4.25) arise. The first class may be written: 

f ( p )  = p2 + (2m cos A)p,  ( 4 . 2 9 ~  ) 

f(a) = [ ( p  cos $A )a + q sin I A  12, (4.296) 

(4 .29~)  f ( r ) = ( r  - a  1 .  
Solution ( 4 . 2 9 ~ )  is the (extreme Kerr)-NUT metric derived from 6 = e '^ (p /m - i cos A ) ,  
m # 0. It is Carter type [A] and its Killing tensor is irreducible. Solution (4.296) 
corresponds to 

g(e)=  m2(1 +cos2 e + 2  sin A cos e); 
g ( T ) = [ ( q  C O S ~ A ) T + ~  sinIAl2; 

g ( z )  = (2az + b ) 2 .  2 2 2  

i A p ( a + l ) + i q ( ~ - l )  
6 = e  

p ( a - l ) + i q ( r + l ) '  

The Killing tensor is irreducible when p f O  and q f O  (type [ A ] ) .  When q = O  
(equivalent t o p  = 0 under (a, T ) +  (7, a)), the solution is in the PE class (type [B(*)], K" 
reducible, four Killing vectors) and contains as special cases the plane symmetric 
space-time (A =0 )  and a flat space-time (A = T, type [ D ] ,  equivalent to (4.27)). 
Solution ( 4 . 2 9 ~ )  may be generated from Minkowski space-time in cylindrical co- 
ordinates by applying an element of L, thence an element of P (and, by equivalence, a 
further L) and is type [ A ]  with irreducible Killing tensor when a f 0. When a = 0, 
( 4 . 2 9 ~ )  becomes the PE solution, 6 = e iA( l  + r 2 ) / ( 1  - r ), b =cot +A (type [B(*)], K" 
reducible, four Killing vectors). The chosen normalisation omits Minkowski space- 
time itself (type [D]) .  

f(p> = up2 + bp - k ,  

2 

The PE solutions of the second kind satisfying (4.28a,b, c)  are given by 

g(e = c COS e + k COS e In cot ; e ;  ( 4 . 3 0 ~ )  

f(a)= aa2  + b a + c  + k In a, g ( T )  = -ar2+ br - k In T ;  

f ( r )  = ar2 + c + k In r, g ( z )  = -2az2 + bz. 

(4.30b) 

( 4 . 3 0 ~ )  

As in the case of (4.25), when we compare the full metrics with (4.17), we find that k = 0 
in (4.30a, b, c). The Killing tensors derived from each of (4.30a, b, c)  with k = 0 will be 
irreducible whenever neither of the functionsf and g is constant (or zero). When either 
f or g is constant, the space either has four Killing vectors or is flat. The special case, 
V = a + b / p  = a + 2b/(a + r ) ,  is common to case 2 and case 3 and, indeed, to case 1 if we 
replace z by z f K so that V becomes a + K - ' ~ / ( x  * y) .  When a f 0, b f 0, this space 
has four Killing vectors and one irreducible Killing tensor from case 3, the case 2 tensor 
being reducible and the case 1 tensor being a linear combination of the case 2 and case 3 
tensors. The further special case, V = b/p ,  is flat and is equivalent under a complex 
element of L to the Carter type [D] metric, (4.29b) with q = 0, A = T, mentioned above. 
In a similar way, V = bz + c has an irreducible case 3 Killing tensor and a reducible case 
4 tensor. 

Several other classes of solutions of the form (4.28a, b, c )  satisfy the dual of the y 
equation. When f ( p ) = O ,  case 2 allows all the Ernst solutions given by (3.11) and 
(3.14a) or (3.20) with € 1  = +1, n = 2-2h, 62  =4-6h  + 4 h 2  including the class 
generated by P from 59 = (1 -cos e) / ( l  +cos e),  e'' =p-2  sin2 0. Substitution of these 
solutions into (4.17) is quite straightforward and we find that the only surviving 
solutions, apart from ( 4 . 3 0 ~ )  with a = b = k = 0, are the PE solutions, 6 = eiA sec e, 
g(8)= 1 +cos2 0 + 2  cos A cos 0 (type [B(*)], K" reducible, four Killing vectors). 
Similarly, when g(z) = 0, Case 4 allows all the solutions given by (3.23) and (3.25) with 
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SI  = 2hl,  (3.26) with h l  = 0, the cylindrically symmetric Weyl and Lewis solutions and 
the class generated by P from the flat space-time, 8 = r2, e’’ = r2. But, again from 
(4.17), the only surviving solutions are ( 4 . 2 9 ~ )  with a = 0 already described and the 
cylindrically symmetric solutions whose only Killing tensor is the trivial tensor (a/&)’. 
In addition, ( 4 . 2 8 ~ )  allows the entire family of Lewis solutions of the second kind, 
1(2.18), but (4.17) restricts these to the single solution (4.7) with trivial Killing tensor 
(a/&)’. The one remaining solution of the dual of the y equation not yet mentioned is 
the isolated case 3 solution, f(o) = o-’, g(p )  = T , equivalent to (4.26) and appearing 
in all four cases, but admitting only the trivial case 4 tensor (d/az)*. 

This completes the discussion of metrics in the Lewis canonical form (1.1) and we no 
longer make use of the theory of I. The conclusion reached so far is that all vacuum 
metrics of the form (1.1) with a Killing tensor, K” = K”(r, z ) ,  have separable HJ and 
Schrodinger equations and all those with Lorentz signature are listed by Carter (1968) 
and are algebraically special, being Petrov type D or flat. When we extend the 
argument to metrics of the form (4.1) not reducible to Lewis’ canonical form, some new 
and interesting results emerge: four classes of metrics with separable HJ and 
Schrodinger equations and Lorentz signature outside Carter’s list, four classes of 
metrics with signature zero where an irreducible Killing tensor cannot be obtained by 
separation of variables in the HJ equation and a class of Lorentz metrics with a Killing 
tensor depending explicitly on the ignorable co-ordinates, 4 and t .  

The argument of Lewis (1932) for choosing A = -r2 in (4.1) breaks down if A is 
constant or a function of a = r + iz or p = r - iz only. Thus, we may make two other 
choices, A = -1 and A = -a . In the latter case, and sometimes in the former, we shall 
take a and /3 as new real variables (i.e. r real, z pure imaginary) so that the metric is real 
valued with signature zero. Now Einstein’s vacuum equations for the metric, 

-1 

2 

ds2 = e2”(dt-w d4)2-ee-2u dq52-eZv-2u(dr2+dz2), (4.31) 

where A = -1, are very easily solved and factorise into two distinct cases. In one case, 
one equation reads, V2(y - U )  = 0, V2 = a2/ar2 + a2/az2 = 4a2/aa ap, so that we may 
choose canonical co-ordinates such that e2v-2u = 1. The remaining equations reduce to 
V2(e2”) = 0 and w = e-” after employing a co-ordinate transformation of the form, 
4’ = *4, t’  = t +A4, A constant. The metric now assumes the canonical form, 

ds2 = e’” dt2 - 2 d 4  dt - (dr2 + dz‘), V2(eZu) = 0, (4.32) 

and is algebraically special, being Petrov type N or flat. 
The other class of metrics of the form (4.31) with vanishing Einstein tensor (the 

word ‘vacuum’ being inappropriate as these metrics cannot adopt a Lorentz signature) 
may be derived from (4.32) by a discrete mapping analogous to the Neugebauer- 
Kramer mapping I( 1.13). Defining (1, by 

G, = e4uw2 = -(e2” 

e2u’ - - e-2u , = i*, e2v’ = -e2v-2u 

ds2=e-2u(dt+(1, d4’)2+e2u(ddr2+dr2+dz2), (4.34) 

4, = -e4uwr = (e 2u ),, 

the mapping is 

(4.33) 
So, formally setting 4 = i4’, we obtain the positive definite Riemannian four-space, 

V2(e2”)= 0, G, = -(eZu),, G, = (ezu),. 
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Alternatively, if a and p are taken as real variables, then the metrics (4.32) and (4.34) 
become the signature-zero metrics, 

ds2 = e’” dt2 - 2 d 4  dt  - d a  do, 

ds2 = e-”(dr-w’ dq5)2+e2u(-d42+da dp) ,  

(4.35) 

(4.36) 

respectively. In all four cases, the formal solution of Einstein’s equations may be 
written, 

e’” =f l (a>+gl (p) ,  of =fl(a)-gl(p),  CL = -iw’. (4.37) 

Now, in the earlier analysis of Killing’s equations, the paragraph containing 
equations (4.10)-(4.18) still applies here except that we must allow the possibility that 
R 2 + Z 2  = 0. Consider the metrics (4.32) and (4.35) first. The simplifying equation 
analogous to (4.20) here is Z,, = 0, obtained from (4.12) with V = 1, so that 

R =:a(r2-z2)+br+ct+d,  Z = a r z - c r + b z + e .  (4.38) 

Next, substituting Vg33 = -(fl(a)+gl(P)) into (4.19), we find 

[aa2+2(b- ic )a  +2(d+ie)]f ;+[3aa +3(b-ic)]f; = k, (4.39a) 

[ap2+2(b  +ic)p + 2(d - ie)]gY + [3ap +3(b +ic)]g; = k, (4.39b) 

k constant. 
Since the form of the metric and Einstein’s equations are preserved by the Euclidean 

group of transformations, r’ = r cos S - z sin S + ro,  z ’  = r sin S + t cos S + zo, 6, ro, to 
constants, there are eight canonical choices for the parameters, a, b, c, d, e. The first 
four yield real Lorentz metrics of the form (4.32) while the last four yield signature-zero 
metrics of the form (4.35). They are: 

C a s e l :  a = l ,  b = c = O ,  d=’ 2~ f O ,  e = 0 ,  

X=2cosh-’x ,  Y=2sin-’y,  ( R 2 + 2 2 ) 1 / 2 = 1  2 K  (x - Y 2 h  
e’” = (x2-y2)-’[kx(x2- 1)l” cosh-’x +Ax(x2- vx2 

( 4 . 4 0 ~ )  -ky(l-y2)’/2sin-’ y + p y ( l - y  2 ) l / Z -  vy’]; 

Case2:  a = l ,  b = c = O ,  d = e = O ,  
2 1 / 2 - 1  2 X = 2 1 n p ,  Y=-28, ( R Z + Z )  - 2 p ,  

e’” =p.2[kp21np+vpZ+A c o s 2 8 + p  sin281; (4.406) 

Case3:  a = 0 ,  b=O, c = l ,  d = e = 0 ,  

x = 2T1l2, Y = 2 P ,  ( R 2  + z 2 ) 1 / 2  = i((T + T), 
e’’ = (v + 7)-’[-;ka2 + A W ” ~  + vv + fkT2 + p ~ * / ’  + VT]; ( 4 . 4 0 ~ )  

Case4:  a = 0 ,  , b = c = O ,  d = l ,  e = 0 ,  

X = J Z r ,  Y = J Z Z ,  ( R ~ + Z ~ ) ’ / ~ = I ,  

e’” = $k(r2 -z2)+Ar + p z  + v ;  (4.40d) 
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Case 7: a = 0 ,  b = l ,  c= - i ,  d = e = 0 ,  k = 0 ,  

X, Y not defined, 

e’’ = f l ( ~ ) + p p - 1 / 2 ,  f l ( a )  arbitrary 

R 2 + Z 2  = 0, 

Case8:  a = 0 ,  b = c = 0 ,  d = l ,  e = i ,  k = 0 ,  

X, Y not defined, R 2 + Z 2 = 0 ,  

e’’ = f l ( a ) + p p ,  fl(a) arbitrary. (4.40h) 

A co-ordinate transformation of the form I(1.6) with P 3  = 0 may be used to set v = 0 in 
cases 1-6. 

Cases 1-4 have separable HJ and Schrodinger equations and Lorentz signature but 
lie outside Carter’s list, except for the flat space-time, e’’ = A r  f p r  + v (case 4 with 
k = 0, case 3 with A = p = 0), which is contained in type [A ]  and Minkowski space-time, 
e’’ = 1, contained in type [D]. The Killing tensor for case 1, written out in full, is 

2 ( x 2 - y 2 ) K i ’ ( ~ ) ( g )  a a  
ax 

a 2  a 2  
= -y2(x2- l)(-) ax - 2 ( 1  -,2)(-) a y  

+ ~ ’ [ ( 1  - y 2 ) ( k ~ ( x 2 -  1)’” cosh-’ x+Ax(x2-  1 ) 1 / 2 + v ~ 2 )  

+ (x2-1 ) (ky ( l -y~)~’*  sin-’ y - p y ( ~ - y ~ ) ~ ~ ~ + v y ~ ) l ( - - - )  (4.41) 
a 2  

and is irreducible if not all of k ,  A and p are zero. The Killing tensor for case 7 is 

(4.42) 
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irreducible if p # 0 and fl(a) not constant. This Killing tensor cannot be derived 
by separation of variables in the HJ equation in the manner normally considered 
(exception: f l ( a )  = A (a + v, equivalent to case 3 with k = 0). However, a 
complete integral of the HJ equation may be obtained by substituting a separated solu- 
tion of the form, S = k t - h q 5 + S l ( a ) + p ’ ’ * S ~ ( a ) ,  and the constant of the motion, 
K,,(dx’/ds)(dx’/ds), arises from the integration of the DE for S 2 .  The Killing tensors for 
the other six cases will not be written out as they are easily derived from (4.16) and 
(4.18). 

Apart from the flat metrics already mentioned, the Killing tensor is reducible in case 
4 (six Killing vectors i f  k # 0) and case 8 (four Killing vectors i f  p # 0, at least five if 
p = 0). Case 3 with k = 0 is particularly interesting as it has two irreducible Killing 
tensors with K” = K”(r,  z )  as well as a third irreducible Killing tensor depending 
explicitly on the ignorable co-ordinates (given below in § 5). The first two may be 
derived by substituting ( 4 . 4 0 ~ )  with k = 0 into (4.39a, 6) and observing that both b and 
c remain undetermined or else by separating the HJ equation in variables, X =  
q a ” ’ + p ~ ~ ’ ~ ,  Y = pa”’ - q71’2. Similarly, in case 6 with k = 0, e2’ does not depend on 
K,  so two Killing tensors will be found but one is reducible. Also, in § 5, we point out 
that case 2 with k = 0, case 2 with k # 0 and A = w = 0 and case 4 with k # 0 also have an 
extra irreducible Killing tensor depending on 4 and t. 

The metrics (4.34) and (4.36) are now very easily analysed. Since Vg33 = -1 or +1, 
(4.19) shows that Z,, = 0 and so R and Z are given by (4.38). Since V = -(fl + g l ) ,  
(4.12) leads to the same equations (4.394 b )  as before. But also Vg34 = -i(fl - g , )  or 
f l  - g l  and Vg44 = -4flg1, so (4.19)forces k = 0 in (4.39a, 6)  but has no other effect. So 
we are led to the same eight cases (4 .40~-h)  as before but with k = 0. The construction 
of the Killing tensors is straightforward, so we shall not pursue the matter. 

The remaining metric form to be considered is the signature-zero metric, 

ds2 = e2”(dt - d+)2 - a 2  e-2u d d 2  - e2v-2u d a  dp, (4.43) 

which has A = -a2. The general solution with vanishing Einstein tensor may be shown 
to be 

e2v-2u= exp ( j f(a)g(a)da)[c(a)M(p)+d(a)N(p)], ( 4 . 4 4 ~ )  

where 

ad - bc = 1, 

cd’ -c ‘d  =f(.)/2a, ab’-a’b =g(a ) ,  

~ ’ d  -ad’+ bc’-b’c = 1/2a,  

the prime denoting d/da.  A single constraint, namely 

p(NM’-MN’)= N’, p constant # 0, (4.45) 
the prime denoting dldp, is sufficient to ensure that (4.43) possesses a second-rank 
Killing tensor. These metrics have R 2  + Z 2  = 0 like cases 7 and 8 above and so are not 
HJ separable in the usual sense but it is easy to obtain a complete integral of the HJ 

equation of the form, S = k t -  hc#J +Sl ( (u )+MN-1S2(a ) .  By changing variable, p = 
p(&, the ratio M / N  may be normalised to any desired functional form, e.g. M / N  = p, 
in which case (4.45) reduces to M = &, N = p. There are two other classes of solutions 
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where the HJ and Schrodinger equations are separable in the variables, ap = p2  and 
p / a  = -e . These are 

eZu = ~a 1 / 2 ~ ~ - 1  + p a 2  + va, (4.46) 

and 

2iB 

w = a e-”, e2v-2u - - a-l12M 

eZu = N ( ~ - ’ / ~ M  +AN)-‘ ,  = a 1 / 2 ~ ~ - 1  , e2v-2u = a - 1 / 2 ~  +AN,  (4.47) 

where, in both cases, 

M = dip - ‘ I 2  + d 2 ~ - 3 / 2  , N = d3 + d4P-’, 

A ,  p, v, d l ,  d2, d3, d4 constants. The special case, d4d: +d3d: = 0, of (4.47) may be 
obtained from Carter’s type [A ]  (type [I?(*)] if d2 = d4 = 0 )  by suitable formal manipu- 
lations of parameters. This metric has four Killing vectors (ten if dl = dz  = 0 )  and the 
Killing tensor is reducible. 

5. Conclusion 

In § 2 and § 3, we found all solutions of the y equation I(2.7) of the four forms, 

l+v 
Y = h  l n - + ~ 2 ( ~ ) ,  1 - v  

-h In P + ~ 2 ( @ ) ,  2h1z + y2(r), (5.1) 

26s + y2(A 1, 

where the co-ordinates, (v, 7) and (p, e),  are defined in the appendix and (s, A )  is 
defined by (3 .2b ) .  The first case yielded the generalised TS solutions and we wrote down 
a new closed-form solution which generalised the Kerr solution to non-zero h. The 
starting point in the derivation was a minor modification of TS ‘Rule (a) ’ .  The second 
case yielded a new ( 6 Z O )  family of solutions which contains the rotating Curzon 
solution (6 = 0), the Kinnersley-Kelley solution and the extreme Kerr solution. The 
third case yielded the Ernst (1977) family of solutions and we provided some new 
closed-form solutions and the fourth case yielded another class of new solutions. 

A most promising problem for future research would be to use the new formulation 
of Einstein’s equations in I to study separable solutions of the y equation of the form, 

Y = Yl(X)+ Y2(Y)? (5.2) 

where ( X ,  Y ) ,  which we may call ‘harmonic co-ordinates’, satisfy X ,  = Yz, X ,  = - Y,. All 
co-ordinate systems used in this paper except (a ,  p )  are of this type, as can be seen by 
setting X = 3 ln[(l + v) / ( l  - v)], Y = cot-’(T1I2) for (v, 7) and X = s, Y = A-’’’ for 
(s, A ) ,  the remaining cases being given by the equations immediately above each of 
(4.22a, b, c, d )  and (4.40e, f ) .  Rather than substituting (5.2) into the y equation with 
y l ( X )  and y 2 ( Y )  both undetermined, it is better to aim for y l ( X ) =  0 or a simple 
function so that y2(  Y )  satisfies a single fourth-order differential equation. It may be 
necessary to allow y to take the more general form, y = R (yl + y2) ,  where R = R (X, Y) 
is some simple function. Of course, many other types of separability may be considered. 

In 5 4, we sought all vacuum metrics of the form (4.1), including those which cannot 
assume the Lewis canonical form (1.1) and metrics with non-Lorentz signature, which 
possess a second-rank Killing tensor whose components do not depend on the ignorable 
co-ordinates, 4 and t .  The principal result was that all metrics with Lorentz signature 
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have separable Hamilton-Jacobi and Schrodinger equations and assume the canonical 
form of Carter (1968, equation (1)) although the four metrics (4.32) with e2’ given by 
(4.40a, 6, c, d )  do not appear on Carter’s list. One may have been tempted to expect 
this result from Woodhouse’s (1975) theorem that any metric with three irreducible 
Killing tensors has separable HJ equation even though, quite clearly, the conditions of 
the theorem are not met. To put an end to such speculation, consider the following 
interesting example: the vacuum metric, 

(5.3) ds2=[p“(A cosnO+p sinnO)+v] d t 2 - 2 d 4  d t - (dp2+p2de2) ,  

of the form (4.32), has the irreducible (n # 0 or 1) Killing tensor, 

@ “ ( A  c o s n B + p s i n n B ) + j L n + l  2 

depending explicitly on the ignorable co-ordinates, 4 and t. There appears to be no way 
of separating variables in the HJ equation or even of providing an elementary complete 
integral in any form for general n. When n = - 2 ,  the metric (5.3) becomes the case 2 
metric (4.406) with k = 0 and so has another irreducible Killing tensor. When n = -+, 
(5.3) becomes the case 3 metric ( 4 . 4 0 ~ )  with k = 0 and so has two more irreducible 
Killing tensors, as pointed out in § 4. A non-trivial limit as n + 0 with irreducible Killing 
tensor takes the form, e’‘ = k In p + p l e  + v, the case p1 = 0 being contained in case 2. 
When n = +2, (5.3) becomes the case 4 metric (4.40d) with k # 0 after a rotation of 
axes. This metric has six Killing vectors but, nevertheless, the Killing tensor (5.4) is 
independent of them. 
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Appendix 

We tabulate A,  B and C in terms of y in five selected co-ordinate bases. The 
co-ordinates, (p, e), (x, y), (v, v), (CT, 7) and (a,  p )  are defined by 

r = p sin 8, z = p COS e, 6 1 )  

r = K ( x 2 -  I ) ” ~ ( I  -y2)”2, z = K X Y ,  K constant, (A.2) 

v = y / x ,  77 =(x2-1) / (1-y2) ,  (A.3) 

(A.4) 

a = r + i z ,  p = r - i z .  (A.5) 

= p (1 + COS e), 7 = p (1 - COS e), 
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(A.86) 

(A.&) 

(A.9a) 

(A.9b) 

(A.9c) 

(A. 1 Oa) 
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